Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 781
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 757-764, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38708510

OBJECTIVE: To explore the effect of intestinal nitrates on the growth of Klebsiella pneumoniae and its regulatory mechanisms. METHODS: K. pneumoniae strains with nitrate reductase narG and narZ single or double gene knockout or with NarXL gene knockout were constructed and observed for both aerobic and anaerobic growth in the presence of KNO3 using an automated bacterial growth analyzer and a spectrophotometer, respectively. The mRNA expressions of narG and narZ in K. pneumoniae in anaerobic cultures in the presence of KNO3 and the effect of the binary regulatory system NarXL on their expresisons were detected using qRT-PCR. Electrophoretic mobility shift assays (EMSA) and MST analysis were performed to explore the specific regulatory mechanisms of NarXL in sensing and utilizing nitrates. Competitive experiments were conducted to examine anaerobic growth advantages of narG and narZ gene knockout strains of K. pneumoniae in the presence of KNO3. RESULTS: The presence of KNO3 in anaerobic conditions, but not in aerobic conditions, promoted bacterial growth more effectively in the wild-type K. pneumoniae strain than in the narXL gene knockout strain. In anaerobic conditions, the narXL gene knockout strain showed significantly lowered mRNA expressions of narG and narZ (P < 0.0001). EMSA and MST experiments demonstrated that the NarXL regulator could directly bind to narG and narZ promoter regions. The wild-type K. pneumoniae strain in anaerobic cultures showed significantly increased expressions of narG and narZ mRNAs in the presence of KNO3 (P < 0.01), and narG gene knockout resulted in significantly attenuated anaerobic growth and competitive growth abilities of K. pneumoniae in the presence of KNO3 (P < 0.01). CONCLUSION: The binary regulatory system NarXL of K. pneumoniae can sense changes in intestinal nitrate concentration and directly regulate the expression of nitrate reductase genes narG and narZ to promote bacterial growth.


Klebsiella pneumoniae , Nitrate Reductase , Nitrates , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/drug effects , Nitrates/metabolism , Nitrates/pharmacology , Nitrate Reductase/metabolism , Nitrate Reductase/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Intestines/microbiology , Gene Expression Regulation, Bacterial , Anaerobiosis , Gene Knockout Techniques
2.
Environ Pollut ; 349: 123923, 2024 May 15.
Article En | MEDLINE | ID: mdl-38580060

In this study, the activity, aggregation performance, microbial community and functional proteins of aerobic granular sludge (AGS) in response to acute inhibition by different concentrations of polystyrene microplastics (PS-MPs) were investigated. As the PS-MPs concentration increased from 0 mg/L to 200 mg/L, the specific nitrogen removal rate and the activity of enzymes were inhibited. The inhibition of specific nitrite reduction rate (SNIRR) and specific nitrate reduction rate (SNRR) was most obvious at the PS-MPs concentration of 100 mg/L, and that of nitrite reductase (NIR) and nitrate reductase (NR) was most obvious at the concentration of 50 mg/L. But the inhibitory effects were mitigated at the concentration of 200 mg/L. The increase of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) indicated that the cells were damaged with the increase of PS-MPs concentration. The content of proteins and polysaccharides in extracellular polymeric substances (EPS) decreased, especially the polysaccharides were more affected. Analysis of zeta potential, hydrophobicity and surface thermodynamics of AGS revealed that addition of PS-MPs was unfavorable for AGS aggregation. It was also found that bacteria genera associated with EPS secretion and nitrogen removal functions were inhibited, while functions associated with cell metabolism, protein synthesis and cell repair were enhanced. This also confirmed that acute inhibition of PS-MPs had a detrimental effect on the nitrogen removal and aggregation performance of AGS. This study can provide theoretical support for the operation of AGS reactors under microplastics impact load.


Microplastics , Polystyrenes , Sewage , Sewage/microbiology , Microplastics/toxicity , Nitrogen , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/toxicity , Bacteria/drug effects , Bacteria/metabolism , Aerobiosis , Reactive Oxygen Species/metabolism , Nitrate Reductase/metabolism
3.
Nat Commun ; 15(1): 1911, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38429292

When the supply of inorganic carbon is limiting, photosynthetic cyanobacteria excrete nitrite, a toxic intermediate in the ammonia assimilation pathway from nitrate. It has been hypothesized that the excreted nitrite represents excess nitrogen that cannot be further assimilated due to the missing carbon, but the underlying molecular mechanisms are unclear. Here, we identified a protein that interacts with nitrite reductase, regulates nitrogen metabolism and promotes nitrite excretion. The protein, which we named NirP1, is encoded by an unannotated gene that is upregulated under low carbon conditions and controlled by transcription factor NtcA, a central regulator of nitrogen homeostasis. Ectopic overexpression of nirP1 in Synechocystis sp. PCC 6803 resulted in a chlorotic phenotype, delayed growth, severe changes in amino acid pools, and nitrite excretion. Coimmunoprecipitation experiments indicated that NirP1 interacts with nitrite reductase, a central enzyme in the assimilation of ammonia from nitrate/nitrite. Our results reveal that NirP1 is widely conserved in cyanobacteria and plays a crucial role in the coordination of C/N primary metabolism by targeting nitrite reductase.


Nitrites , Synechocystis , Nitrites/metabolism , Nitrates/metabolism , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Ammonia/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Synechocystis/genetics , Synechocystis/metabolism , Nitrogen/metabolism , Carbon/metabolism , Nitrate Reductase/genetics , Nitrate Reductase/metabolism
4.
Int J Biol Macromol ; 262(Pt 1): 129620, 2024 Mar.
Article En | MEDLINE | ID: mdl-38262549

In bacteria, NarJ plays an essential role as a redox enzyme maturation protein in the assembly of the nitrate reductase NarGHI by interacting with the N-terminal signal peptide of NarG to facilitate cofactor incorporation into NarG. The purpose of our research was to elucidate the exact mechanism of NarG signal peptide recognition by NarJ. We determined the structures of NarJ alone and in complex with the signal peptide of NarG via X-ray crystallography and verified the NarJ-NarG interaction through mutational, binding, and molecular dynamics simulation studies. NarJ adopts a curved α-helix bundle structure with a U-shaped hydrophobic groove on its concave side. This groove accommodates the signal peptide of NarG via a dual binding mode in which the left and right parts of the NarJ groove each interact with two consecutive hydrophobic residues from the N- and C-terminal regions of the NarG signal peptide, respectively, through shape and chemical complementarity. This binding is accompanied by unwinding of the helical structure of the NarG signal peptide and by stabilization of the NarG-binding loop of NarJ. We conclude that NarJ recognizes the NarG signal peptide through a complementary hydrophobic interaction mechanism that mediates a structural rearrangement.


Escherichia coli , Protein Sorting Signals , Nitrate Reductase/chemistry , Nitrate Reductase/metabolism , Escherichia coli/metabolism , Oxidation-Reduction , Hydrophobic and Hydrophilic Interactions
5.
BMC Plant Biol ; 24(1): 48, 2024 Jan 13.
Article En | MEDLINE | ID: mdl-38216909

Cultivated peanut (Arachis hypogaea L.) represents one of the most important oil and cash crops world-widely. Unlike many other legumes, peanuts absorb nitrogen through their underground pods. Despite this unique feature, the relationship between yield and nitrogen uptake within the pod zone remains poorly understood. In our pot experiment, we divided the underground peanut part into two zones-pod and root-and investigated the physiological and agronomic traits of two peanut cultivars, SH11 (large seeds, LS) and HY23 (small seeds, SS), at 10 (S1), 20 (S2), and 30 (S3) days after gynophores penetrated the soil, with nitrogen application in the pod zone. Results indicated that nitrogen application increased pod yield, kernel protein content, and nitrogen accumulation in plants. For both LS and SS peanut cultivars, optimal nitrogen content was 60 kg·hm- 2, leading to maximum yield. LS cultivar exhibited higher yield and nitrogen accumulation increases than SS cultivar. Nitrogen application up-regulated the expression of nitrogen metabolism-related genes in the pod, including nitrate reductase (NR), nitrite reductase (NIR), glutamine synthetase (GS), glutamate synthase (NADH-GOGAT), ATP binding cassette (ABC), and nitrate transporter (NRT2). Additionally, nitrogen application increased enzyme activity in the pod, including NR, GS, and GOGAT, consistent with gene expression levels. These nitrogen metabolism traits exhibited higher up-regulations in the large-seeded cultivar than in the small-seeded one and showed a significant correlation with yield in the large-seeded cultivar at S2 and S3. Our findings offer a scientific basis for the judicious application and efficient utilization of nitrogen fertilization in peanuts, laying the groundwork for further elucidating the molecular mechanisms of peanut nitrogen utilization.


Arachis , Nitrogen , Arachis/genetics , Nitrogen/metabolism , Proteins/metabolism , Seeds/genetics , Glutamate-Ammonia Ligase/metabolism , Nitrate Reductase/metabolism
6.
Plant Physiol Biochem ; 206: 107850, 2024 Jan.
Article En | MEDLINE | ID: mdl-38042099

Understanding the physiological mechanism underlying nitrogen levels response to a low red/far-red ratio (R/FR) can provide new insights for optimizing wheat yield potential but has been not well documented. This study focused on the changes in nitrogen levels, nitrogen assimilation and nitrate uptake in wheat plants grown with and without additional far-red light. A low R/FR reduced wheat nitrogen accumulation and grain yield compared with the control. The levels of total nitrogen, free amino acid and ammonium were decreased in leaves but nitrate content was temporarily increased under a low R/FR. The nitrate reductase (NR) activity in leaves was more sensitive to a low R/FR than glutamine synthetase, glutamate synthase, glutamic oxalacetic transaminase and glutamic-pyruvic transaminase. Further analysis showed that a low R/FR had little effect on the NR activation state but reduced the level of NR protein and the expression of encoding gene TaNR1.2. Interestingly, a low R/FR rapidly induced TaPIL5 expression rather than TaHY5 and other members of TaPILs in wheat, suggesting that TaPIL5 was the key transcription factor response to a low R/FR in wheat and might be involved in the downregulation of TaNR1.2 expression. Besides, a low R/FR downregulated the expression of TaNR1.2 in leaves earlier than that of TaNRT1.1/1.2/1.5/1.8 in roots, which highlights the importance of NR and nitrogen assimilation in response to a low R/FR. Our results provide revelatory evidence that restricted nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 mediate the suppression of nitrogen assimilation under a low R/FR in wheat.


Ammonium Compounds , Triticum , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Triticum/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Ammonium Compounds/metabolism
7.
PLoS One ; 18(12): e0293471, 2023.
Article En | MEDLINE | ID: mdl-38127853

Nitrogen (N) and rhizosphere pH are the two main factors restricting the growth of winter wheat (Triticum aestivum L.) in North China Plain. Soil nutrient availability is affected by soil acidity and alkalinity. In order to understand the effect of rhizosphere pH value on wheat nitrogen metabolism and the response of wheat growth to pH value at seedling stage, winter wheat varieties 'Aikang 58' (AK58) and 'Bainong 4199' (BN4199) were tested in hydroponics under three pH treatments (pH = 4.0, 6.5, and 9.0). The results showed that the accumulation of dry matter in root and above ground under pH 4.0 and pH 9.0 treatments was lower than that under pH 6.5 treatments, and the root/shoot ratio increased with the increase of pH value. Regardless of pH value, 'BN4199' had higher root dry weight, root length, root surface area, root activity and root tip than 'AK58'. Therefore, wheat that is tolerant to extreme pH is able to adapt to the acid-base environment by changing root characteristics. At pH 4.0, the net H+ outflow rate of wheat roots was significantly lower than that of the control group, and the net NO3- flux of wheat roots was also low. The net H+ outflow occurred at pH 6.5 and 9.0, and at the same time, the net NO3- flux of roots also increased, and both increased with the increase of pH. The activity of nitrate reductase (NR) in stem of pH 9.0 treatment was significantly higher than that of other treatments, while the activity of glutamine synthetase (GS) in root and stem of pH 6.5 treatment was significantly higher than that of other treatments. Under pH 4.0 and pH 9.0 treatments, the activities of NR and GS in 'BN4199' were higher than those in 'AK58', The root respiration of 'BN4199' was significantly higher than that of 'AK58' under pH 4.0 and pH 9.0 treatment, and 'BN4199' had higher NO3- net flux, key enzyme activity of root nitrogen metabolism and root respiration. Therefore, we believe that 'BN4199' has strong resistance ability to extreme pH stress, and high root/shoot ratio and strong root respiration can be used as important indicators for wheat variety screening adapted to the alkaline environment at the seedling stage.


Seedlings , Triticum , Seedlings/metabolism , Nitrogen/metabolism , Proton-Motive Force , Nitrate Reductase/metabolism , Glutamate-Ammonia Ligase/metabolism , Soil
8.
Funct Plant Biol ; 50(12): 1099-1116, 2023 Dec.
Article En | MEDLINE | ID: mdl-37875021

Nickel (Ni) contamination hinders plant growth and yield. Nitric oxide (NO) and thiourea (Thi) aid plant recovery from heavy metal damage, but their combined effects on pepper (Capsicum annuum ) plant tolerance to Ni stress need more study. Sodium nitroprusside (0.1mM, SNP) and 400mgL-1 Thi, alone and combined, were studied for their impact on pepper growth under Ni toxicity. Ni stress reduces chlorophyll, PSII efficiency and leaf water and sugar content. However, SNP and Thi alleviate these effects by increasing leaf water, proline and sugar content. It also increased the activities of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase. Nickel stress lowered nitrogen assimilation enzymes (nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase and glutamate dehydrogenase) and protein content, but increased nitrate, ammonium and amino acid content. SNP and Thi enhanced nitrogen assimilation, increased protein content and improved pepper plant growth and physiological functions during Ni stress. The combined treatment reduced Ni accumulation, increased Ni in leaf cell walls and potentially in root vacuoles, and decreased Ni concentration in cell organelles. It effectively mitigated Ni toxicity to vital organelles, surpassing the effects of SNP or Thi use alone. This study provides valuable insights for addressing heavy metal contamination in agricultural soils and offers potential strategies for sustainable and eco-friendly farming practices.


Capsicum , Nitric Oxide , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Nickel/toxicity , Nickel/metabolism , Capsicum/metabolism , Nitrate Reductase/metabolism , Nitrate Reductase/pharmacology , Sugars/metabolism , Sugars/pharmacology , Nitrogen/metabolism , Nitrogen/pharmacology , Water/metabolism , Water/pharmacology
9.
Environ Sci Pollut Res Int ; 30(55): 117637-117653, 2023 Nov.
Article En | MEDLINE | ID: mdl-37870669

The possibility of using the non-nitrogen-fixing cyanobacterium (Chroococcus sp.) for the reduction of soil nitrate contamination was tested through Petri dish experiments. The application of 0.03, 0.05 and 0.08 mg/cm2 Chroococcus sp. efficiently removed NO3--N from the soil through assimilation of nitrate nutrient and promotion of soil denitrification. At the optimal application dose of 0.05 mg/cm2, 44.06%, 36.89% and 36.17% of NO3--N were removed at initial NO3--N concentrations of 60, 90 and 120 mg/kg, respectively. The polysaccharides released by Chroococcus sp. acted as carbon sources for bacterial denitrification and facilitated the reduction of soil salinity, which significantly (p < 0.05) stimulated the growth of denitrifying bacteria (Hyphomicrobium denitrificans and Hyphomicrobium sp.) as well as significantly (p < 0.05) elevated the activities of nitrate reductase and nitrite reductase by 1.07-1.23 and 1.15-1.22 times, respectively. The application of Chroococcus sp. promoted the dominance of Nocardioides maradonensis in soil microbial community, which resulted in elevated phosphatase activity and increased available phosphorus content. The application of Chroococcus sp. positively regulated the growth of soil bacteria belonging to the genera Chitinophaga, Prevotella and Tumebacillus, which may contribute to increased soil fertility through the production of beneficial enzymes such as invertase, urease and catalase. To date, this is the first study verifying the remediation effect of non-nitrogen-fixing cyanobacteria on nitrate-contaminated soil.


Cyanobacteria , Nitrates , Cyanobacteria/metabolism , Nitrate Reductase/metabolism , Nitrite Reductases/metabolism , Soil , Denitrification
10.
J Plant Physiol ; 290: 154105, 2023 Nov.
Article En | MEDLINE | ID: mdl-37871476

Studying the effects of nitrogen limitation on carbon, nitrogen metabolism, and nutrient uptake of mung bean is a scientific issue. In this study, urea (CO(NH2)2, 125 kg hm-2) was applied at the V2, V6, R1, R2, and R4 stages, respectively, to ensure sufficient N resources during the growth process of mung beans. This study found that nitrogen limitation inhibited mung bean photosynthesis and reduced photosynthetic efficiency, which was manifested by reducing Pn (net photosynthetic rate), Gs (stomatal conductance), Tr (transpiration rate), and Ci (intercellular carbon dioxide concentration). Second, nitrogen limitation reduced N metabolism-related enzyme activity, such as NR (nitrate reductase), GOGAT (glutamate synthase), and GDH (glutamate dehydrogenase), indicating that nitrogen limitation inhibited the process of nitrogen metabolism, reducing nitrogen assimilation. Meanwhile, topdressing N fertilizer can promote the P and K uptake, and improve the partial factor productivity of P and K, which suggests that nitrogen limitation reduced P and K use efficiency. In addition, this study found that Lvfeng5 responded more significantly to nitrogen fertilizers, and had higher nitrogen use efficiency or better adaptability compared with Lvfeng2. This study provided valuable insights into the physiological and metabolic responses of mung beans to nutrient deficiency.


Vigna , Vigna/metabolism , Nitrogen/metabolism , Photosynthesis , Nitrate Reductase/metabolism , Glutamate Dehydrogenase/metabolism
11.
Sci Total Environ ; 904: 167001, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37704155

As a toxic element of global concern, the elevated concentration of antimony (Sb) in the environment has attracted increasing attention. Microorganisms have been reported as important driving forces for Sb transformation. Iron (Fe) is the most important metal associated element of Sb, however, how Fe-bearing minerals affect the biological transformation of Sb is still unclear. In this study, the effects of Fe-bearing minerals on biological Sb(V) reduction were investigated by employing a marine Shewanella sp. CNZ-1 (CNZ-1). Our results showed that the presence of hematite, magnetite and ferrihydrite (1 g/L) resulted in a decrease in Sb(III) concentration of ~19-31 % compared to the Fe(III)-minerals free system. The calculated Sb(V) reduction rates are 0.0256 (R2 0.71), 0.0389 (R2 0.87), 0.0299 (R2 0.96) and 0.0428 (R2 0.95) h-1 in the hematite-, magnetite-, ferrihydrite-supplemented and Fe(III)-minerals free systems, respectively. The cube-shaped Sb2O3 was characterized as a reductive product by using XRD, XPS, FTIR, TG and SEM approaches. Differential proteomic analysis showed that flagellar protein, cytochrome c, electron transfer flavoprotein, nitrate reductase and polysulfide reductase (up-regulation >1.5-fold, p value <0.05) were supposed to be included in the electron transport pathway of Sb(V) reduction by strain CNZ-1, and the key role of nitrate reductases was further highlighted during this reaction process based on the RT-qPCR and confirmatory experiments. Overall, these findings are beneficial to understand the environmental fate of Sb in the presence of Fe-bearing minerals and provide guidance in developing the bacteria/enzyme-mediated control strategy for Sb pollution.


Ferric Compounds , Iron , Ferric Compounds/metabolism , Iron/metabolism , Nitrate Reductase/metabolism , Ferrosoferric Oxide , Proteomics , Oxidation-Reduction , Minerals/metabolism , Antimony/analysis
12.
Int J Biol Macromol ; 253(Pt 1): 126655, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37660866

The entrance of chromium (Cr) into the agricultural system would exert a negative influence on the carbon/nitrogen metabolism (CNM) of plants. In this study, we investigated the role of exogenous proline-mediated Ca2+-dependent signaling in the regulation of CNM in rice subjected to Cr(VI) stress, with emphasis on the involvement of nitrate reductase (NR) and sucrose phosphate synthase (SPS). Results demonstrated that proline effectively mitigated the growth inhibition of rice imposed by Cr(VI) stress, which is achieved by a reduction in cytoplasmic Ca and Cr content and the activation of the downstream Ca2+-dependent signaling pathway. Additionally, proline displayed a positive effect in modulating the expression and activities of NR and SPS under Cr(VI) stress, which are attributed to the cross-regulation between calcium-dependent protein kinases (CDPKs) and 14-3-3 proteins (14-3-3s). Consequently, nitrogen use efficiency and sucrose content in rice under Cr(VI) + proline treatments were higher than Cr(VI) treatments. Gene expression variation factors underscored that the regulation of proline on NR is crucial to the Ca2+-dependent signaling pathway, initiated by the interaction between CDPKs and 14-3-3s in rice plants during Cr(VI) stress. These results reveal that proline interacts with Ca2+-dependent signaling pathways to enhance Cr tolerance in rice by regulating NR and SPS.


Oryza , Oryza/metabolism , Nitrate Reductase/metabolism , Nitrate Reductase/pharmacology , Proline/metabolism , Chromium/pharmacology , Signal Transduction , Nitrogen/metabolism
13.
Sci Rep ; 13(1): 12483, 2023 08 01.
Article En | MEDLINE | ID: mdl-37528243

This study aims to clarify the effects of different concentrations of sodium chloride on the carbon and nitrogen metabolism and yield of Tartary buckwheat. The salt-sensitive cultivar Yunqiao 2 was pot-grown and treated with four salt concentrations including 0, 2, 4, and 6 g kg-1. The root morphology index increased from seedling stage to maturate stage. The content of soluble protein in the leaves reached the maximum at the anthesis stage, and the other substances content and the enzymes activity related to carbon and nitrogen metabolism reached the maximum at the grain filling stage. The root morphology index, root activity; invertase, amylase, sucrose synthase, and sucrose phosphate synthase activities; nitrate-nitrogen, ammonium nitrogen, and soluble protein content; and nitrate reductase and glutamate synthase activities increased first and reached the maximum at 2 g kg-1 treatment and then decreased with increasing salt stress concentration. The content of soluble sugars and sucrose and the activity of glutamate dehydrogenase increased continuously with increasing salt concentration, and reached the maximum in the 6 g kg-1 treatment. The grain number per plant, 100-grain weight, and yield per plant increased first and reached the maximum at 2 g kg-1 treatment and then decreased with increasing salt stress concentration. In summary, moderate salt stress (2 g kg-1) can promote the root growth, increase the content of carbon and nitrogen metabolism-related substances and enzyme activity, and increase the yield per plant of Tartary buckwheat.


Fagopyrum , Tracheophyta , Fagopyrum/metabolism , Carbon/metabolism , Proteins , Nitrate Reductase/metabolism , Salt Stress , Plants/metabolism , Tracheophyta/metabolism , Nitrogen/metabolism
14.
Plant Physiol ; 193(4): 2734-2749, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37625793

Although the sources of molecular hydrogen (H2) synthesis in plants remain to be fully elucidated, ample evidence shows that plant-based H2 can regulate development and stress responses. Here, we present genetic and molecular evidence indicating that nitrate reductase (NR) might be a target of H2 sensing that positively regulates nitrogen use efficiency (NUE) and seed size in Arabidopsis (Arabidopsis thaliana). The expression level of NR and changes of NUE under control and, in particular, low nitrogen supply were positively associated with H2 addition supplied exogenously or through genetic manipulation. The improvement in nitrate assimilation achieved by H2 was also mediated via NR dephosphorylation. H2 control of seed size was impaired by NR mutation. Further genetic evidence revealed that H2, NR, and nitric oxide can synergistically regulate nitrate assimilation in response to N starvation conditions. Collectively, our data indicate that NR might be a target for H2 sensing, ultimately positively regulating nitrate uptake and seed size. These results provide insights into H2 signaling and its functions in plant metabolism.


Arabidopsis , Nitrates , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Nitrates/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plants/metabolism , Seeds/genetics , Seeds/metabolism , Nitrogen/metabolism , Hydrogen
15.
Microbiol Spectr ; 11(3): e0359622, 2023 06 15.
Article En | MEDLINE | ID: mdl-37199609

Staphylococcus aureus is a pathogenic bacterium with a widespread distribution that can cause diverse severe diseases. The membrane-bound nitrate reductase NarGHJI serves respiratory function. However, little is known about its contribution to virulence. In this study, we demonstrated that narGHJI disruption results in the downregulation of virulence genes (e.g., RNAIII, agrBDCA, hla, psmα, and psmß) and reduces the hemolytic activity of the methicillin-resistant S. aureus (MRSA) strain USA300 LAC. Moreover, we provided evidence that NarGHJI participates in regulating host inflammatory response. A mouse model of subcutaneous abscess and Galleria mellonella survival assay demonstrated that the ΔnarG mutant was significantly less virulent than the wild type. Interestingly, NarGHJI contributes to virulence in an agr-dependent manner, and the role of NarGHJI differs between different S. aureus strains. Our study highlights the novel role of NarGHJI in regulating virulence, thereby providing a new theoretical reference for the prevention and control of S. aureus infection. IMPORTANCE Staphylococcus aureus is a notorious pathogen that poses a great threat to human health. The emergence of drug-resistant strains has significantly increased the difficulty of preventing and treating S. aureus infection and enhanced the pathogenic ability of the bacterium. This indicates the importance of identifying novel pathogenic factors and revealing the regulatory mechanisms through which they regulate virulence. The nitrate reductase NarGHJI is mainly involved in bacterial respiration and denitrification, which can enhance bacterial survival. We demonstrated that narGHJI disruption results in the downregulation of the agr system and agr-dependent virulence genes, suggesting that NarGHJI participates in the regulation of S. aureus virulence in an agr-dependent manner. Moreover, the regulatory approach is strain specific. This study provides a new theoretical reference for the prevention and control of S. aureus infection and reveals new targets for the development of therapeutic drugs.


Methicillin-Resistant Staphylococcus aureus , Nitrate Reductase , Staphylococcal Infections , Animals , Humans , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Virulence , Virulence Factors/genetics
16.
J Plant Physiol ; 286: 154000, 2023 Jul.
Article En | MEDLINE | ID: mdl-37207503

Numerous environmental stresses have a significant impact on plant growth and development. By 2050, it is anticipated that high salinity will destroy more than fifty percent of the world's agricultural land. Understanding how plants react to the excessive use of nitrogen fertilizers and salt stress is crucial for enhancing crop yield. However, the effect of excessive nitrate treatment on plant development is disputed and poorly understood; so, we evaluated the effect of excessive nitrate supply and high salinity on abi5 plant growth performance. We demonstrated that abi5 plants are tolerant to the harmful environmental conditions of excessive nitrate and salt. abi5 plants have lower amounts of endogenous nitric oxide than Arabidopsis thaliana Columbia-0 plants due to their decreased nitrate reductase activity, caused by a decrease in the transcript level of NIA2, a gene encoding nitrate reductase. Nitric oxide appeared to have a critical role in reducing the salt stress tolerance of plants, which was diminished by an excess of nitrate. Discovering regulators such as ABI5 that can modulate nitrate reductase activity and comprehending the molecular activities of these regulators are crucial for the application of gene-editing techniques. This would result in the appropriate buildup of nitric oxide to increase the production of crops subjected to a variety of environmental stresses.


Arabidopsis Proteins , Arabidopsis , Nitrates/metabolism , Nitric Oxide/metabolism , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant
17.
Plant Cell Physiol ; 64(9): 1082-1090, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37217185

While photoautotrophic organisms utilize inorganic nitrogen as the nitrogen source, heterotrophic organisms utilize organic nitrogen and thus do not generally have an inorganic nitrogen assimilation pathway. Here, we focused on the nitrogen metabolism of Rapaza viridis, a unicellular eukaryote exhibiting kleptoplasty. Although belonging to the lineage of essentially heterotrophic flagellates, R. viridis exploits the photosynthetic products of the kleptoplasts and was therefore suspected to potentially utilize inorganic nitrogen. From the transcriptome data of R. viridis, we identified gene RvNaRL, which had sequence similarity to genes encoding nitrate reductases in plants. Phylogenetic analysis revealed that RvNaRL was acquired by a horizontal gene transfer event. To verify the function of the protein product RvNaRL, we established RNAi-mediated knock-down and CRISPR-Cas9-mediated knock-out experiments for the first time in R. viridis and applied them to this gene. The RvNaRL knock-down and knock-out cells exhibited significant growth only when ammonium was supplied. However, in contrast to the wild-type cells, no substantial growth was observed when nitrate was supplied. Such arrested growth in the absence of ammonium was attributed to impaired amino acid synthesis due to the deficiency of nitrogen supply from the nitrate assimilation pathway; this in turn resulted in the accumulation of excess photosynthetic products in the form of cytosolic polysaccharide grains, as observed. These results indicate that RvNaRL is certainly involved in nitrate assimilation by R. viridis. Thus, we inferred that R. viridis achieved its advanced kleptoplasty for photoautotrophy, owing to the acquisition of nitrate assimilation via horizontal gene transfer.


Ammonium Compounds , Nitrates , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Nitrates/metabolism , Phylogeny , Nitrogen/metabolism
18.
BMC Plant Biol ; 23(1): 231, 2023 May 01.
Article En | MEDLINE | ID: mdl-37122012

BACKGROUND: Tillage measures have been effectively adopted for mitigating waterlogging damage in field crops, yet little is known about the role of tillage measures in crop responses to waterlogging. A field experiment was performed to investigate the effect of conventional planting (CK), small ridge planting (SR), big ridge planting (BR) and film side planting (FS) on soil available nutrients and enzymatic activity, chlorophyll contents, leaf nutrients, soluble protein, soluble sugar, nitrate reductase, antioxidant enzyme activity, lipid peroxidation, agronomic traits and yield of rapeseed under waterlogging stress conditions. RESULTS: Tillage measures remarkably improved rapeseed growth and yield parameters under waterlogging stress conditions. Under waterlogging conditions, rapeseed yield was significantly increased by 33.09 and 22.70% in the SR and BR groups, respectively, compared with CK. Correlation analysis showed that NO3--N, NH4+-N, and urease in soils and malonaldehyde (MDA), superoxide dismutase (SOD), and nitrate reductase in roots were the key factors affecting rapeseed yield. The SR and BR groups had significantly increased NO3--N by 180.30 and 139.77%, NH4+-N by 115.78 and 66.59%, urease by 41.27 and 26.45%, SOD by 6.64 and 4.66%, nitrate reductase by 71.67 and 26.67%, and significantly decreased MDA content by 14.81 and 13.35% under waterlogging stress, respectively, compared with CK. In addition, chlorophyll and N content in leaves, soluble sugar and POD in roots, and most agronomic traits were also significantly enhanced in response to SR and BR under waterlogging conditions. CONCLUSION: Overall, SR and BR mitigated the waterlogging damage in rapeseed mainly by reducing the loss of soil available nitrogen, decreasing the MDA content in roots, and promoting urease in soils and SOD and nitrate reductase in roots. Finally, thorough assessment of rapeseed parameters indicated that SR treatment was most effective followed by BR treatment, to alleviate the adverse effects of waterlogging stress.


Brassica napus , Brassica rapa , Brassica napus/metabolism , Urease/metabolism , Soil , Brassica rapa/metabolism , Superoxide Dismutase/metabolism , Chlorophyll/metabolism , Antioxidants/metabolism , Nitrate Reductase/metabolism , Sugars/metabolism
19.
BMC Genomics ; 24(1): 104, 2023 Mar 09.
Article En | MEDLINE | ID: mdl-36894890

Lelliottia amnigena PTJIIT1005 is a bacterium that utilizes nitrate as the sole nitrogen source and can remediate nitrate from media. The annotation was done related to nitrogen metabolic genes using the PATRIC, RAST tools, and PGAP from the genome sequence of this bacterium. Multiple sequence alignments and phylogenetic analysis of respiratory nitrate reductase, assimilatory nitrate reductase, nitrite reductase, glutamine synthetase, hydroxylamine reductase, nitric oxide reductase genes from PTJIIT1005 were done to find out sequence identities with the most similar species. The identification of operon arrangement in bacteria was also identified. The PATRIC KEGG feature mapped the N-metabolic pathway to identify the chemical process, and the 3D structure of representative enzymes was also elucidated. The putative protein 3D structure was analyzed using I-TASSER software. It gave good quality protein models of all nitrogen metabolism genes and showed good sequence identity with reference templates, approximately 81-99%, except for two genes; assimilatory nitrate reductase and nitrite reductase. This study suggested that PTJIIT1005 can remove N-nitrate from water because of having N-assimilation and denitrification genes.


Nitrates , Nitrogen , Nitrates/metabolism , Nitrogen/metabolism , Phylogeny , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Bacteria/metabolism
20.
PLoS One ; 18(3): e0283787, 2023.
Article En | MEDLINE | ID: mdl-37000779

Nitrate content is an essential indicator of the quality of vegetables but can cause stress at high levels. This study aimed to elucidate the regulatory mechanisms of nitrate stress tolerance in spinach (Spinacia oleracea L.). We studied the effects of exogenous application of 15 (control), 50, 100, 150, 200, and 250 mM NO3- on spinach growth, physiology, and photosynthesis. The results showed that all the nitrate treatments inhibited the growth of the aerial parts of spinach compared to the control. In contrast, low nitrate levels (50 and 100 mM) promoted spinach root formation, but this effect was inhibited at high levels (150, 200, and 250 mM). Treatment with 150 mM NO3- significantly decreased the root growth vigor. Low nitrate levels increased the chlorophyll content in spinach leaves, whereas high levels had the opposite effect. High nitrate levels also weakened the net photosynthetic rate (Pn), the actual photochemical efficiency of PSII Y(II), and increased non-photochemical quenching (NPQ), reducing photosynthetic performance. Nitrate stress increased the activity of nitrate reductase (NR) and promoted the accumulation of nitrate in spinach leaves, exceeding the health-tolerance limit for nitrate in vegetables, highlighting the necessity of mitigating nitrate stress to ensure food safety. Starting with the 150 mM NO3- treatment, the proline and malondialdehyde content in spinach leaves and roots increased significantly as the nitrate levels increased. Treatment with 150 mM NO3- significantly increased soluble protein and flavonoid contents, while the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were significantly reduced in leaves. However, spinach could resist nitrate stress by regulating the synthesis of osmoregulatory substances such as proline, thus showing some nitrate tolerance. These results provide insights into the physiological regulatory mechanisms of nitrate stress tolerance and its mitigation in spinach, an essential vegetable crop.


Nitrates , Spinacia oleracea , Nitrates/pharmacology , Spinacia oleracea/metabolism , Photosynthesis , Nitrate Reductase/metabolism , Chlorophyll/pharmacology , Proline/metabolism , Plant Leaves/metabolism
...